上来说,也不过是普通中等级别的而已。
托卡马克装置能轻松的实现亿级温度的等离子体高温,但仿星器要做到亿级温度,得要了老命。
反正现在的仿星器是做不到的。
目前最先进的仿星器,是普朗克等离子体研究所的‘螺旋石7X’。
虽然在之前创造了五千万度六分半的历史记录,但实际上达到这个温度的只不过是电子温度而已,它的等离子体温度只达到2000万度。
尽管2000万度的温度已经达到了氘氚聚变的最低温度1400万度以上,但在可控核聚变中,温度越高,聚变现象越容易发生,能提供的能量也就越高,这是毋庸置疑的。
当然,这只是简单的解释。
事实上真正影响聚变效率的是反应截面,也就是等离子体中带正电原子核之间互相碰撞的概率。
而影响碰撞概率的因素就是聚变三重积,即反应物质密度,反应温度和约束时间的乘积。
这三重因素越大,聚变的可能性就越大。
比如等离子体密度越大,那么等离子体之间碰撞的概率越高。
就好比你在春运期间被踩脚的概率远大于你平时坐火车被踩脚的概率,因为人多了;
而等离子体温度越高,代表等离子体的活跃度越高。
毕竟温度本身反映的就是粒子运动的剧烈程度,粒子越活跃那么碰撞发生聚变的可能性就越高。
同样好比春运,如果大家都安静的坐着等车也不容易被踩脚。真正有风险的是大家都走起来上下火车的时候,踩到脚的概率就大了。
提高温度就是让粒子都活跃起来,粒子就像人群一样,一活跃就容易碰撞在一起。
至于控制时间,那就不说。
而在这三重因素上,托卡马克在前两者占优势,仿星器在后者占优势。
这也是徐川选择从类托卡马克装置入手,而不是从仿星器入手的原因之一。
当然,仿星器的优点还是很大的,对于磁场的控制优点是托卡马克装置值得学习借鉴的地方。
他准备利用这一点,从这方面入手修改一下破晓的外场线圈,来优化托卡马克装置中的磁面撕裂、等离子体孤岛等问题。
至于控制模型,如果说前面破晓外场线圈的重设问题还可以交给其他研究员一起合作的话,后面这个,大抵就只能他自己亲自出手了。
庆幸的是,在重生回来后,他当机立断的选
本章未完,请点击下一页继续阅读!