网络架构和训练方法,通过非线性、动力学建模、行为相关神经动态的分离和优先级以及连续和间歇行为数据建模。
能够提高神经-行为预测的准确性、优化原始局部场电位的识别等传统神经信号模拟技术难以做到的领域。
不过想要从这些算法和实验数据中找出问题,哪怕是他,也一时半会难以做到。
毕竟一方面这并不是他熟悉的领域,另一方面神经信号的实验数据量,有点大。
其他的不说,光是正常清醒状态的大脑节律,与思考、有意识解决问题、对外部世界的注意力有关的β波(贝塔波)频率就高达14-30Hz。
听起来这个数据似乎很小,毕竟每秒钟波动14-30次对于人类的研发的科技来说并不算什么。
但如果是结合脑神经对于各种外界信号的反馈和处理,进而产生的数据,就是一个庞大无比的量了。
好在对于脑神经型号来说,绝大部分的数据都可以通过不同的指标来进行归类。
否则要通过脑机接口芯片处理如此庞大数据根本就是一件不现实的事情。
书房中,徐川端起瓷杯中早已经凉了的茶水喝了一口润了润嗓子,活动了下疲劳的眼睛。
“小灵,帮我盯一下SAS数据平台的数据分析工作,如果出现了和之前已经完成的数据幅度超过百分之五以上的数据提醒我一下。”
“好的,主人!交给小灵吧!”
书房中,小灵的声音响起,徐川拉开椅子,朝着外面走去,准备去冲个澡。
不得不说,这的确是他在应用数学上遇到过的一个比较棘手的难题了。
几乎所有的脑神经型号数据和转换的电信号数据从数学的角度上来说都没什么问题和异常。
哪怕是通过SAS数据平台对整个数据进行分析处理,都没有找到问题。
在排除掉了两个数学模型之间的数据转换可能存在的误差和问题后,一连好几天,对于脑机接口技术中出现的问题,基本都没有什么新的进展。
冲了个澡,去掉了一身的疲惫后,徐川从冰箱中摸出来一袋酸奶,叼在嘴里朝着书房中走去。
脑机接口芯片方面的问题已经耗费了他十来天的时间了,如果这两天再找不到问题,他就准备先放一放。
虽然没能够解决这个问题会影响他在徐晓心中‘无所不能’的形象。
但他手上还有很多其他的工作,不可能将时间都消耗在这个
本章未完,请点击下一页继续阅读!